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We start from the primitive concepts of preparticle and membership relation 
E of set theory to obtain the derivative concepts of particle (already intro- 
duced in a previous work), field, and the interaction between systems of 
particles. We have explicitly stated, in addition, what the relationship 
between a system of particles and the field it produces is in the present model 
of physical systems. In order to discuss the motion of particles we have 
analyzed one of the possible definitions of a reference frame. 

1. I N T R O D U C T I O N  

There are three fundamental  assumptions that  may enter into the formal- 
ism or interpretation o f  physical theories. 

Assumption 1 says that  matter  is made up of  elementary constituents 
which are the invariable and indivisible bricks out  o f  which matter  is formed. 
In  a general discussion we prefer the name of  elementary constituent instead 
o f  elementary particle, because this last term has already a specific connota-  
tion in some physical theories, as for instance in quantum field theory. 

Assumption 2 stipulates that  the interaction between elementary con- 
stituents smears out  the brick-building structure o f  matter, giving rise to a 

kind of  cont inuum or field, and that  physical entities as particles are collective 
excitations o f  such a cont inuum (Sakharov, 1967; Misner et al., 1970a). 

Assumption 3 says that  any physical system is formed by elementary 
constituents which, whether divisible or not,  allow a complete description o f  
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the system concerned in terms of these elementary constituents and its inter- 
actions. 

Assumptions 1 and 3 are clearly atomistic hypotheses, though the same 
kind of hypothesis is hidden in the background of assumption 2. This applies 
even to physical theories that incorporate continuums as mathematical 
frameworks, such as occurs for instance in classical and quantum field 
theories. In these cases, such continuums have their elementary constituents, 
which are precisely their points. Notice that one cannot define the concept of 
geometrical continuum without using the concept of geometrical point. 

The difference between assumptions 1 and 3, on one hand, and assump- 
tion 2 resides mainly in the fact that assumptions 1 and 3 emphasize the 
elementary constituents of physical systems while assumption 2 underlines 
the interaction between these elementary constituents, which is frequently 
described by means of elastic constants. But in each of the assumptions 1, 2, 
and 3 the existence of elementary constituents is either implicitly or explicitly 
taken for granted. 

Notice that the elementary constituents may change with the physical 
theory concerned. For instance, the elementary constituents of fluid mechanics 
are the elements of volume of the fluid which, though containing a large 
number of molecules are very small in comparison with a characteristic 
macroscopic volume of the fluid under consideration. The elementary 
constituents of molecular and solid state physics are the electrons and nuclei, 
and sometimes the atoms themselves. The elementary constituents of quantum 
field theory are the elementary particles, experimentally established up to this 
moment. 

The above three assumptions are not incompatible, though separately 
they may lead to different models of matter. Most frequently they appear 
"mixed in different proportions," either incorporated into the basis of the 
theory and/or as interpretative recourses that aid in making intuitive repre- 
sentations of physical systems described by physical theories. For instance, 
assumption 3 can be harmonized with assumption 1 by adding the specifica- 
tion that elementary constituents of assumption 3 arise from the association 
of the invariable and indivisible elementary constituents of assumption 1. 
On the other hand, assumption 3 is also compatible with the idea that the 
elementary constituents entering into a given physical theory can always be 
decomposed into new elementary constituents, which in turn enter into a 
more fundamental theory of matter, and so on and so forth. Yet, this will 
lead to an infinite regress, which, apart from being a logical defect, weakens 
the explanatory power of the atomistic hypotheses. In short, assumption 1 
cuts off the infinite regress that may be allowed by assumption 3. This is one 
of the reasons why each time that assumption 3 is considered we should also 
consider assumption 1. 
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Now, what do experimental results say about atomistic hypothesis with 
an infinite regress ? First, let us stress that experience cannot give a conclusive 
answer in the positive sense to this question in a finite lapse of time. This is 
simply because an infinite number of experiences would be required, one for 
each step of the infinite regress. However, experience can give an increasing 
amount of indications in favor of one of the following two possibilities: (i) 
atomistic hypothesis with infinite regress, or (ii) atomistic hypotheses without 
infinite regress. Notice that if experience supports assumption (i) it will be a 
strong reason to give up atomistic models of matter (even if only by the logical 
defect involved in such a case). 

At first sight, one could think that experience supports assumption 3 
with an infinite regress, each time towards more elementary constituents of 
matter. This impression comes from the fact that most of the elementary 
constituents of matter that have been proposed in the last century, and in the 
beginning of the present one have been broken in collision experiments 
where exchange of enough energy takes place. Thus, the supposedly most 
elementary constituents of matter separate into new particles which have 
been clearly identified as constituent parts of what were previously considered 
to be elementary constituents of matter. For instance, molecules decompose 
into atoms by processes involving exchange of energy relevant to chemistry, 
i.e., from 1 to ~ l0 eV. Atoms have been broken into electrons and nuclei 
by collisions where exchange of energy of ~ 10 ev for light atoms and of 
~ 10 keV for heavy atoms takes place. Nuclei break down into protons, 
neutrons, and other particles when exchange of energy roughly around 
10 MeV occurs between nuclei. Now, independently of the fact that some of 
the actually considered elementary particles could appear in the future as 
composite particles (promising candidates in this sense are the nucleons, 
which are now suspected to be formed by quarks), something radically new 
has happened in the experiments of high energy carried out in the last four 
decades (Heisenberg, 1976; Wichmann, 1967). What has occurred when the 
attempt has been made to break up the actually considered elementary 
particles in a collision experiment is that new elementary particles have been 
created with or without the destruction (which is regulated by the conserva- 
tion laws) of the originally colliding particles. However, these new elementary 
particles cannot be considered as forming parts of the particles initially 
entering into the collision. This entirely new fact points towards the re- 
inforcement of atomistic hypotheses without the above-mentioned infinite 
regress. 

There is at least one difficulty arising from atomistic models of matter. 
For instance, consider the elementary constituents of the whole universe U 
and their interactions. One can ask what is the nature of these interactions. 
Then, if "action at a distance" is disregarded, as is effectively done in 
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modern physics, one is compelled to postulate the existence of a physical 
entity, say ~F, through which the interaction between the elementary con- 
stituents of U is mediated. Once this has been done, and in order to be 
consistent with the atomistic hypothesis, one must ask what are the 
elementary constituents of  W. These will be new elementary constituents 
which were not considered initially when all the elementary constituents of U 
were given and the attempt was made to explain the interactions existing 
between them. Accordingly, one starts with all the elementary constituents of 
U and still there are more elementary constituents of U. 

If  a part of U (say u~ = U) is concerned, then by following a similar 
argument one arrives at the conclusion that a system ul of  interacting par- 
ticles requires the existence of a nonempty system u2 = U, such that all the 
elementary constituents of the physical entity ~F' mediating the interaction 
between the constituents of ul belong to u2. Therefore u~ and u2 are different 
sets. In short, when one invokes a system of interacting particles one is really 
invoking two different systems. 

One answer could be that the above paradox arises because we have 
introduced implicitly the assumption that a particle and the fields that it 
produces are different entities. Suppose, then, that to avoid the above diffi- 
culty one must always consider a particle together with the fields that it 
produces as a sole physical object. In that case, though we avoid the above 
paradox, it remains that an elementary constituent of matter invoked in 
assumption 1 can hardly be identified with such a complex entity as an ele- 
mentary particle together with the fields that it produces. In particular, the 
spatially extended character of fields fits well into the idea that fields can be 
considered as formed by an infinite number of field oscillators. Each one of 
these oscillators is an entity more simple than the field to which it belongs. 

Accordingly, it may be of interest to propose a theory that is probably 
too simple to be true, but founds the concepts of particle, field, and interaction 
between particles on only two primitive concepts that are of a simple nature 
and are intuitively clear. These are the concepts of preparticle and member- 
ship relation of set theory. Furthermore, we hope that this theory will be free 
from paradoxes of the type discussed above. 

To this end we develop further a theory of time formulated in a previous 
paper (Garcia-Sucre, 1975). Therein was postulated the existence of un- 
changeable physical objects without internal structure which were called 
preparticles. Here preparticles are considered to be the basic ingredient of the 
world. Furthermore, preparticles cannot interact. It is more precise to state 
that interaction between particles will be shown here to be a derivative concept 
not defined for any pair of preparticles or a pair consisting of a preparticle 
and a particle. In short, this is the way we propose to circumvent the 
above-discussed paradox. Namely, the elementary constituents of matter 
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are preparticles that are different from particles, and only particles can 
interact. 

From the point of view of atomistic models, our theory can be considered 
as an atomistic model of matter with a cutoff of the above-discussed infinite 
regress. The cutoff occurs at the level of preparticles. Furthermore, particles 
either elementary or composite have the common trait of  having the pre- 
particles as basic ingredients. 

The fact that preparticles do not interact imposes the restriction that pre- 
particles cannot be detected, since it is hard to conceive how a physical entity 
can be detected without interacting with it. As we will see in Section 2, this 
restriction does not apply to particles since these entities can interact in our 
model. Hence, particles may have in our model a physical interpretation, or 
differently stated, there can be given a semantic rule of reference (Bunge, 
1967) relating them to the actual particles that have been detected experi- 
mentally. Yet, we do not describe in our model the detailed properties of 
these entities, but rather their general traits. 

2. PARTICLES AND FIELDS 

In a previous paper (Garcia-Sucre, 1975) the existence of  a denumerably 
infinite set B = (~,il i E N} was postulated, where N is the set of all 
natural numbers. We have called this the base set of all physical systems 
to which all the preparticles ~i belong. Notice that B has no structure, its only 
property being that of having all the preparticles as unique members. 

Relations of  temporal and spatial order between occurrences are 
among the more fundamental relationships in physics (Russell, 1969). We 
have shown (Garcia-Sucre, 1975) that time and temporal order can be 
obtained as a derivative concept starting uniquely from the concepts of pre- 
particle and membership relation ~ of set theory. In so doing, we have been 
guided by a very interesting property of orders demonstrated by Hessenberg 
(1906), Kuratowski (1921), and Fraenkel (1925), and clearly discussed by 
Fraenkel and Bar-Hillel (1958). To see what this property consists of let us 
first recall some elementary definitions of set theory (see for instance Fraenkel, 
1961a). 

The power-set P(Q) of a set Q is the set whose members are all the 
subsets of  Q. For instance, consider a set Q = {a,b}. Then P ( Q ) =  
{~, {a}, {b}, {a, b}}. 

A chain is a set C of sets x such that for any two different members x and 
x'  of  C, we have either x c x' or x'  c x (Fraenkel and Bar-Hillel, 1958). To 
given an example of  a chain consider a set C = {x, x'} with x = {cq} and 
x' = {~1, a4, ~5}- In this case C is a chain since we have x c x'. 

Given a set Q, a maximal chain M of subsets of Q is  defined by the 
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following properties: (a) M _ P(Q), (b) M is a chain, and (c) if M '  satisfies 
(a) and (b), and M ~ M' ,  then M = M '  (Fraenkel and Bar-Hillel, 1958). 

Consider the set Q = {~1, ~2}- Then P(Q) = (~ ,  {~1}, {c~2}, {c~1, c~2}} and 
the maximal chains included in P(Q) are M1 = {~, {~1}, {~, ~2}} and 
M2 = {~, {c~2}, {ax, ~2}}. 

According to Hessenberg (1906), Kuratowski (1921), and Fraenkel (1925) 
ordered sets can be defined in the following way: 

A set Q is said to be orderable if a maximal chain of subsets of Q exists. 
Furthermore, for every set Q there exists at least a maximal chain M which 
defines an order in Q; i.e., a rule giving rise to a relation < between the 
members of Q fulfilling the well-known properties of connectivity, assymetry, 
irreflexivity, transitivity, and substitutivity (Fraenkel, 1961b). 

The way in which a given maximal chain M included in P(Q) orders Q 
can be briefly described and is as follows: For any two different members s 
and s' of Q there exists a x ~ M such that either s ~ x and s' ~ x or s' ~ x and 
s ~ x. The first and second cases correspond s <: s' and s' < s respectively. In 
this way the concept of order can be reduced to the membership relation e of 
set theory. 

Let us give an example. Consider a finite set Q~ = {s~, s2, s3} and its 
corresponding power-set P(Q,~) = {~, {sl}, {s2}, {sa}, (sl, s2}, {sl, s2}, {sl, sa}, 
{s2, sa}, {s~, s2, s3}}. Then, all the maximal chains included in P(Qa) are given 
by M1 = {~, {sl}, {sl, s2}, {sl, s2, sa}}, M2 = {~, {sl}, {sl, sa}, {sl, s2, sa}}, 
Ms = {~, {s2}, {sl, s2}, {sl, s2, sa}}, M~ = {~, {s2}, {s2, ss}, {sa, s2, sa}}, 
Ms = {N, {sa}, {sl, sa}, {sl, s2, s3}} and M6 = {~, {s3}, {s~, s3}, {sl, s2, s3}}. 
It can easily be seen that the above M~'s fulfill the properties (a), (b), and (c) 
given above as characterizing completely a maximal chain. Furthermore, M~, 
M2, M3, M4, Ms, and M6 induce ordering in Q which respectively give rise to 
the ordered sets (sl, s2, sa), (sl, ss, s2), (s2, sl, ss), (s2, sa, s~), (ss, sa, s~), and 
(s,, sz, s~). We have used the parentheses ( ) to denote ordered sets, instead 
of the curly brackets { }, which, following the usual notation, we have 
reserved for plain sets. 

To illustrate the way in which the above maximal chains order the set 
Q~ = {s~, s~, s~}, consider the maximal chain M~ = (~,  {s~}, {s~, s~}, 
{sx, s~, s~}}. For this case we have that there exists a x ~ Ms (x = {s2}) such 
that s~ ~ x and sl, s~ r x. Then, according to what we have already said above 
(in relation to the way in which a given maximal chain M included in P(Q) 
orders Q) it follows that sz -< s~ and s~. -< s3. In the same way there exists a 
y E M (y = {s~, s~}) such that s~ e y and sz r y and thus sa -< s.. Therefore, 
we finally obtain that M8 orders Q~ = {sl, s~, s~} yielding the ordered set 
(~,  s~, s~). 

In the present work we will use the concept of partial chain rather than 
maximal chains, which will allow a more flexible classification of the subsets 
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of  P(Q). For us, a partial chain is any subset of P(Q). Accordingly, the 
concept of  partial chain covers the concept of chain as a particular case, 
which in turn covers the concept of  maximal chain. In general, in a partial 
chain C there exists a set C ~ C which is a chain, whether empty or not. In 
this connection consider a set G~ = {#(x) [ x E X and #(x) ~ P(Q)}, where 
X __c R and i ~ N, and R stands for any set of  indexes with the power of  the 
continuum. Then we call ~ state of G~ any set 

s ' ( x ) = a ' ( x ) -  ~ a'(x') (2.1) 
X'EX'(X) 

where the a~(x')'s with x '~  X'(x) are all the members of G~ such that 
#(x) g= a~(x ') (Garcia-Sucre, 1975). Furthermore, if some or all of  the mem- 
bers of  G~ are ordered by the proper inclusion relation c ,  then some or all of  
the ~ states of G~ are ordered by the following rule: Given two ~ states of G~ 

s'(x) = #(x) - ~)  #(x') 
x'~X'(x) 

and 

s ' (y)  = aJ(y) - ~_~ a~(y ') 
y'eX'(y) 

then one has s~(x) -< s~(y) i f f#(x)  c a~(y). We will denote by Y. (G~) the set of 
all the a states of  G~. Chains induce partial ordering of the subsets of Q, and 
completely order a special set of subsets of Q, namely, the set of ~ states of  the 
chain concerned. For instance, consider again the set Q~ = {sl, s2, ss} and the 
chain (71 c P(Qa) given by C1 = {{sl}, (sl, s2, ss}}. Then C1 partially orders 
Q, since the order induced in Q by C1 is given by sl -< s2 and s~ -< s3; how- 
ever, nothing has been said in relation to the order between s2 and sa. Never- 
theless, from equation (2.1) it follows that the ~ states of  (71 are given by 
{sl} = {sl} - ~ and {s2, sa} = {sl, s2, sa} - {sl}, and according to the above 
ordering rule we have {sl} -< {s2, sa} since {sl} c {s~, s2, sa}. Therefore C1 
completdy orders the set ~ (C~) whose members are the ~ states of (71. 

On the other hand, a partial chain ~2 c p(Qa) given by C2 = {{sl}, 
{s~, s2}, {s3}} is such that the chain (72 = {{s~}, {sl, s2}} is properly included in 
C2. Accordingly, C2 orders partially Q~, and in contrast with the last case, E2 
also orders partially the set ~ (~2). 

What we have said before suggests that to obtain from the plain set 
B = {~ [ i e N} (whose members are all the preparticles) a set structured by 
orders relations, the simplest candidate to be considered is the power set P(B). 

We then introduce the following definitions: 

Definition 1. Given the base set B, whose members are all the preparticles, 
any subset of P(B) represents a particle (Garcia-Sucre, 1975). 
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Fig. 1. ab, cd, el, and eg are arcs of curve whose elements are rational points, ab and cd 
illustrate the case of evolving particles such that every point of each arc is an ,~ state of  
the evolving particles concerned. The arcs e f  and cg together represent a nonevolving 
particle. 

According to this definition the union and the intersection of two par- 
ticles are also particles. In order to avoid exceptions we will agree to call the 
empty set ~ ,  which is obviously a subset of B, the empty particle. 

We distinguish two types of particles (Garcia-Sucre, 1975): those particles 
represented by chains, which we call evolving particles; and those represented 
by subsets of  P(B), which are not chains, and which we call nonevolving 
particles. 

According to these definitions, given an evolving particle p, then the set 
(p) of ~ states of p can be interpreted as the whole history of the particle 

and each ~ state as a stage of this history. This interpretation does not apply 
to the case of a nonevolving particle p', since an order cannot be given for 
some or all the ~ states ofp ' .  However, there may exist nonevolving particles 
,5 such that a subset of ~ (/3) can be interpreted as a partial history of/3. 

To make clearer the difference between evolving and nonevolving 
particles let us discuss the following analogy. Suppose we have an evolving 
particle p. Then the set Y. (p) will be a completely ordered set of a-states ofp.  
If  each ~ state is interpreted as a stage of the history of p, then by counting the 

states belonging to ~ (p) which are between given pairs of ~ states of p, we 
can establish a clock that measures proper-time intervals within p. According 
to what we have said above in connection with nonevolving particles it 
follows that within a nonevolving particle proper-time intervals cannot be 
defined for every pair of ~ states of such a particle. 

Therefore, if one assumes that within a particle it is always possible to 
define proper-time intervals between any pair of events of that particle, then 
all the existing particles are evolving particles. However, if this is not the case, 
then nonevolving particles also exist. 

To illustrate Definition 1 let us consider the following representations of 
particles. Call ab the set of points belonging to the arc of curve shown in 
Figure 1, such that their coordinates are rational numbers. The set ab is a 
reinterpretation of an evolving particle whose elements are all the initials of 
ab determined by every point of the arc ab. An initial of a set Q is any subset 
Q' of  Q such that Q' contains together with any So ~ Q' all s ~ Q for which 
s ~( So in Q (Franekel, 1961c). Then, every point of ab is an a state of the 
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evolving particle represented by ab and thus is an element of ~ (ab). The 
arrowhead on each curve specifies the way in which the points of each curve 
are ordered. Accordingly, in Figure 1 every point q belonging to ab is an 
state of  ab. Furthermore, the initial aq determined in ab by q is an element of 
ab. Another example is provided by the points belonging to the discontinuous 
curve cd appearing in Figure 1. This represents an evolving particle whose 
elements are all the initials of cd determined by rational points belonging to 
cd. Again, each rational point of cdis an c~ state ofcd, i.e., a member o f ~  (cd). 
There appears a third example in Figure 1 corresponding to a nonevolving 
particle. Its elements are represented by the initials of  the arcs ef  and eg 
determined by every rational point of  either e for  eg. More generally, a non- 
evolving particle would appear on the figure as a set of  points and/or regions 
of  the plane that are either only partially ordered, or not ordered at all. Each 
of these points and regions would represent an ~ state of the particle 
concerned. 

Definition 2. We call an arbitrary set of particles a physical system 
(Garcia-Sucre, 1975). 

Definition 3. Given a physical system S and an ~ state s~(x) of a particle 
Pt belonging to S, we call complex a(s~(x); S)  any ordered pair (si(x); 1-I~ (S)), 
where 1--[~ (S) _~ S and for any p ~ I-i~ (S) there exists at least one s ~ ~ (p) 
fulfilling s c~ s~(x) # ;~. We call s~(x) and i-I~ (S) the center and the ~ set 
of the complex a(s~(x); S), respectively. 

Let the lines of Figure 2 be formed by rational points and assume that 
the lines appearing on this figure represent all the particles belonging to a 
given physical system S. Then, in Figure 2 there are as many complexes 

P9 /sk(z) ~LPs/ 

Fig. 2. Following the same conventions as in Figure 1, here are illustrated as many 
complexes, and as many a states are represented by points having rational coordinates 
and belonging to the lines appearing on this figure. The only complexes having 1-I sets 
with more than one member are o(s~(x); S), o(sS(y); S), and e(s~(z); S), and the corre- 
sponding I-i sets are {pl, p2,p3, p~}, {pl, ps, p6, pT, P8}, and {P4, Pg}, respectively. 
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represented as there are ~ states represented by rational points belonging to 
the lines appearing in this figure. The only complexes having associated with 
them 1-] sets with more than one particle are those given by cr(s~(x); S), 
o(sffy); S), and o(sk(z); S). Because of  Definition 3 and Figure 2 the corre- 
sponding 1-[ sets are given by I--[~x(S)= {Pl, P2,Pa, P4}, FI~(S)  = 
{Pl, p~, Ps, Pv, Ps} and ~ (S) = {p,, Pg}. 

Figures 1 and 2 were constructed in such a way that every ~ state of  the 
particles represented there is a set containing one preparticle only. However, 
according to our definition of  particle, an ~ state of  a particle can be a set of  
more than one preparticle. Such a states we will call composite a states. 
Figure 3 represents some particles of  a system S with the same conventions as 
in Figures 1 and 2; i.e., points of  the plane with rational coordinates repre- 
sent preparticles and every continuous or discontinuous curve of rational 
points with an arrowhead represents an evolving particle. In addition, we 
represent in this figure particles with some, or all, of  their ~ states composite. 
A composite ~ state is represented by enclosed regions whose internal rational 
points are the preparticles belonging to the represented ~ state. We make the 
convention that  the closed curves serving to specify sets of  preparticles form- 
ing ~ states do not represent any particle of  S. The particle C1 in the above 
figure is such that there is no particle belonging to S appearing in the interior 
of  any one of its composite a states. We will say that  such composite states 
are internally disconnected in S. Using this terminology, some of the c~ states of  
the particle Cm represented in Figure 3 are internally disconnected. On the 
other hand, the ~ states of  the particles Q and Ck are sets of  one preparticle. 

The connection between particles or between complexes is given by the set 
of  all particles such that some of their ~ states have a nonempty intersection 

Ci C i 

f 

:m 

Fig. 3. Following the same conventions as in Figures 1 and 2 here are represented some 
particles of a system S with some or all of their a states composite. A composite ~ state 
is represented by enclosed regions whose internal points with rational coordinates are 
the preparticles belonging to the represented a state. The concept of internally dis- 
connected a state is also illustrated by those regions without internal lines. 
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with some of the ~ states of the connected particles, or with the ~ states that 
are centers of the connected complexes. 

We will speak of two particles as directly connected when the correspond- 
ing connection is a nonempty set. Furthermore, we will consider two particles 
as indirectly connected when, even though the corresponding connection is 
an empty set, there exists a set P of particles to which our two particles 
belong, and the members of P form a sequence of particles such that two 
consecutive members are directly connected. Otherwise, we will speak about 
disconnected particles. In a parallel way, definitions of directly connected, 
indirectly connected, and disconnected complexes can be introduced. 

Definition 4. We say that two particlesp~ andpj  are similar iff there exists 
a one-to-one mapping, say r between the sets ~ (P0 and ~ (pj) which 
preserves the order of the a states of both particles, and such that two corre- 
sponding a states are equivalent sets of preparticles. We call r a similarity 
mapping between ~ (p~) and Y. (pj). 

Notice that according to the above definition the mapping r preserves 
the order in ~ (pj) and ~. (p j), including the case where ~ (P0 and ~ (pj) are 
only partially ordered sets. 

Definition 5. Two complexes ~s~(x); S) and a(sJ(y); S) are similar, and 
we denote this as a(s~(x); S) ~ a(sJ(y); S), iff there exists a one-to-one 
mapping ~0 between 1--[~ (S) and 1-[~ (S) fulfilling the following conditions: 

(a) Ifp~ e i ~  (S),pj e ~ (S) andp~ ~ pj, thenp~ andpj  are similar particles. 

(b) There exists a similarity mapping ~ ( p ~ ) ~  ~ (pj) (Definition 4) which 
puts into correspondence s~(x) and sJ(y). 

(c) If  p~, p'~ ~ I--I~ (S), pj, p~. ~ I ~  (S), Y. (p,) ~ ~ (pj), and ~ (p'~) ~ ~ (p~.), 
then the intersections between the ~ states of p~ with those of p'~ are 
equivalent to the intersections between the if-corresponding ~ states ofpj  

t with those ofpj .  

Notice that according to the above definition one of the consequences of 
cr(s~(x); S) ,,, cr(sJ(y) ; S) is that st(x) and sJ(y) must contain the same number 
of preparticles. 

Let us give an example illustrating definitions 4 and 5. Figure 4 represents 
the complexes (r(s~(x);S) and ~(s~(y);S), where S =  {P~,P2,...,p~o}. 
Particles p~ (i = 1, 2 . . . . .  10) are represented with the same conventions as 
the particles appearing in Figure 1. Therefore, each rational point on each 
arrow appearing in Figure 4 is an c~ state of the particle represented by the 
arrow under consideration; i.e., the ~ states of any p~ ~ S are sets to which 
belong only one preparticle. All the particles appearing in the figure are similar 
to each other (see Definition 4), given that for any two particles p~, p~ ~ S, 
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(a) P' (b) P, 

. 

Fig. 4. o(s~(x); S)  and a(sJ(y); S) are similar complexes. In the case illustrated above 
all the particles entering into both complexes are similar to each other. The I-i sets 
i-Ix ~ (S) and I - i j  (S) of these two complexes are both sets of five evolving particles. 

there exists a one-to-one mapping between ~ (p~) and ~ (pj) preserving the 
order in both sets, and the a states that are in correspondence are sets of the 
same number of  preparticles. Furthermore, the sets 1-I~ (S) and 1-I~ (S) 
corresponding to cr(s~(x); S) and e(sJ(y); S) are equivalent sets of particles 
(both are sets of five particles). In addition, for two given p~ E 1-i~x (S) and 

qt 
pj E I ~  (S) there always exist a similarity mapping ~ [p~] +-+ ~ [pj] that puts 
into correspondence the a states s~(x) and sJ(y). Therefore, according to 
Definition 5 the complexes ~(s~(x); S) and'o(sJ(y); S) are similar. 

Definition 6. Given a physical system S we call a structure-set of S the 
set ~. ~ (S) whose members are all the complexes of  S. 

Definition 7. The field f produced by a physical system S is given by 
the quotient set ~ Y. (S)/~. We call a point of f any equivalence class 

a ~ ~ Z (S)/~'. 

In Figure 5 we give an example of a field produced by a system S. Figure 
5a represents a system S whose members are all of  the evolving particles 
appearing therein as arrows. These are represented by following the same 
conventions as for Figure 1. In a similar way as occurs in the case of Figure 4, 
every rational point lying on any arrow is an ~ state of a particle belonging to 
S. The structure set of S, ~ ~ (S), is a set whose members are all the com- 
plexes that can be constructed from the particles belonging to S. (See Defini- 
tion 6.) Thus, there are as many complexes as rational points belonging to the 
arrows appearing on the figure. ~ ~ (S) is then a denumerably infinite set. 

Furthermore, there are three types of complexes belonging to F. ~. (S): 
complexes for which there are, respectively, four, three, and one evolving 
particles passing over the center of the complex. With the same argument 
already given in the description of  Figure 4, it follows that all the complexes 
consisting of four arrows are similar. The same applies to complexes for 
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(a) 
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Fig. 5. In (a) is represented a system S whose members are all of  the evolving particles 
appearing therein as arrows. In (b) the f i e ld f  = ~ ~ (S)/~" produced by S is illustrated. 
The field f has in this example only five points denoted as al,  az, a3, a4, and as. Each 
such point is an equivalence class of complexes of the system S. The double-line connec- 
tions between the points of f stand for all the particles connecting complexes belonging, 
respectively, to the equivalence classes a ~ and a j with i, j = 1, 2 . . . .  ,5. 

which three arrows pass over the center of the complex. The corresponding 
equivalence classes with respect to the similarity relation between complexes 

(see Definition 5), are represented in Figure 5b by choosing an arbitrary 
representative of  each equivalence class. These two equivalence classes are 
denoted as a5 and a4 in Figure 51~. 

For complexes such that only one arrow passes over the center of the 
complex, there are three different equivalence classes: namely, equivalence 
classes of complexes such that the center of each complex is either the first, 
intermediate, or the last ~ state of the unique arrow involved in the complex. 
In Figure 5b these equivalence classes are labeled al, a2, and a3 respectively. 

For any two evolving particles p~ and Pi there does not exist a similarity 
mapping ~ (p~)~+* Y. (pj) that puts into correspondence a first member of 

(p~) with either an intermediate or last member of  ~ (pj). As a result we 
have the three equivalence classes al, a2, and as. 

The double-line connections appearing on this figure stand for all the 
particles connecting complexes belonging, respectively, to the equivalence 
classes a~ and aj with i ~ j and i, j --- 1 . . . . .  5. The field f produced by the 
system S (Definition 7) represented in the Figure 5a is then the set Y~ Y~ (S)/ 
= {a~ [ i = 1 . . . .  ,5} of equivalence classes a~ illustrated in Figure 5b. Further- 
more, each a~ is a point o f f  (Definition 7). 

The above definition of field fits well into the idea of geometrizing 
fields, typical of  general relativity and more generally of geometrodynamics 
(Wheeler, 1962). In these theories, fields can always be interpreted in terms of  
the geometry of space-time. Although we do not analyze the concept of 
space-time in the present paper [this will be studied in a forthcoming paper 
(Garcia-Sucre, 1977)], we can roughly say that we will consider space-time 
as a kind of global field. Here, given a physical system S, the corresponding 
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field contains information about the structure of each point of the field and 
the way in which these points are connected, all giving the topology of the 
field. Yet, the above definitions allow for change of topology in a way depend- 
ing on the particles entering in the system S, which produces the field in 
question. The way in which topology may change in our model will be stated 
below, where the concept of interaction between systems of particles will be 
introduced (see Definition 9). This feature of our model opens a possibility to 
solve a crucial problem raised by Wheeler (1962), namely, that a description 
of the spin in the framework of geometrodynamics requires that the topology 
of space-time could change. However, such a change cannot be produced by 
any topological transformation, i.e., a biunique and continuous transforma- 
tion. 

Notice that according to Definition 7 each point of a field is such that 
the complexes belonging to it have a structure different from the structure of 
the complexes belonging to the remaining points of the field (however slight 
or strong the difference may be). This feature allows for the complete charac- 
terization of each point of a field in relation to the remaining points of the 
same field. 

Another reason to call field the entity introduced in Definition 7 is that, 
in the scheme of geometrizing fields, this definition permits an easy character- 
ization of separations between complexes of a field ~ ~ (S)/~. Namely, a 
time separation between two complexes a(s~(x); S) and a(sJ(y); S) is essen- 
tially given by an evolving particle p belonging to S, such that the first and 
last ~ state ofp have a nonempty intersection with s~(x) and sJ(y), respectively. 
The sense of the time separation being given by the order of the set ~ (p) of 

states of p. A measure of the above separation could be the number of a 
states belonging to ~ (p). On the other hand, a space separation between the 
above complexes is given by a sequence of complexes fulfilling the following: 
(i) Consecutive complexes are directly connected by an evolving particle; (ii) 
the sense of the connections alternates from one connection to the neighbor- 
ing one in the sequence; and (iii) the evolving particles making up the con- 
nections are similar and have only two a states (see Figure 6). 

A measure of a space separation could be the number of complexes 
entering in the above-mentioned sequence. 

In general, two complexes will be connected in so many different ways 
that different kinds of separations exist between them. Moreover, the con- 
nections and separations between points x and x' belonging to a field are given 
by all the connections and separations between complexes a~ and a s belonging 
to x and x', respectively (Figure 5). 

To analyze further the problem of the connections and separations 
between points of a field let us introduce the following concepts: 

A partial complex ~(s~(x); S) of a given complex a(s~(x); S ) =  
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(s'(x); lq~ S)) is any ordered pair (s~(x); I-I~ (S)) for which I ~  (S) _= 1"-I~ (S). 
A partial field f o f  afield f i s  any set of equivalence classes & (with respect 

to ~,  see Definition 5) of partial complexes obtained from the complexes 
belonging to the points off .  We call any & era point of f .  

According to the above definitions given a complex cr(s~(x); S), then any 
complex ~'(s~(x); S'), where S' _= S, is a partial complex of ~(s~(x); S). 
Similarly, the f ie ldf '  produced by S'  is a partial field of the field fproduced  
by S. However, given a partial complex #(s~(x); S) and a partial field f of 
cr(s~(x); S) and f ,  respectively, there does not always exist a system S' _~ S 
for which we have o(s~(x); S) = cr(s~(x); S') and f '  = f .  For instance, con- 
sider the case S = {p~, Ps} and a(s~(x); S) = (s~(x); {p~}), Then, there is no 
S'  _ S such that ~(s~(x); S') = ~(s~(x); S) = (s~(x); ~).  This is because 
cr(s~(x); S) = (s~(x); {p~}) implies s~(x) ~ ~ (p~). Furthermore, any S '  ~ S for 
which there exists a complex ~(s~(x); I--I~ (S')) must be such that at least a 
particle, sayp', belonging to S'  fulfills s~(x) ~ (p'). However, in such a case 
we have p' E ~ (S') and therefore H~(S') ~ ~.  

An evolving-particle-stretch of a given evolving particle p~ is any evolving 
particle p k such that the set of ~ states ~ (p~) is a subset of consecutive 
members of ~ (Pt)- 

For instance, p k =  {(~}, {~, ~}} is an evolving-particle-stretch of 
p, = {{%}, {~, %}, {~, %, c~a)} since ~ (p,) = ({%}, {%}, {%}) and ~ (p,~) = 
({~a}, {~}). Another example of an evolving-particle-stretch ofp~ is provided 
by p~ itself since ~ (P0 ~ ~ (P~)- 

An evolving channel EC is a set of evolving particles such that there 
exists a p~ e EC so that any p~ ~ EC is an evolving-particle-stretch 
of p~. 

An example of evolving channel is provided by the set EC~ = {Pz, Pz, Pa}, 
where p~ = {{c~}}, p~ = {{%}}, and p~ = {{cq}, {~, %}}. Similarly, EC2 = 
{P~, Pa} and ECa = {p~, Pa} are also evolving channels. 

Two evolving channels EC and EC' are similar if for every particlep~ ~ EC 
there exists a p~ ~ EC' similar to p~, and conversely (see Definition 4). 

Two evolving channels EC and EC' cross each other if there exists at 
least two particles p~ and p~ belonging, respectively, to EC and EC' such that 
s ~ Y. (p~), s' ~ Y~ (P'0 and s ~ s' # ~ .  

We say that a point ~ ~ f is in the evolving channel EC if there exists at 

least one e(s~(x); 1-~ (S)) ~ .~ for which s~(x) ~ ~ (p) and p ~ EC. 
Two evolving channels EC and EC' are immediately connected if (i) every 

~7 in EC is connected to only one ~7' in EC', and conversely; (ii) each such 
connection is a set of only one evolving particle; and, (iii) each such particle 
has only two c~ states, which are, respectively, the centers of two partial 
complexes, one of them belonging to ~7 and the other to ~'. In this case we 
will also say that the points ~7 and ~7' are immediately connected. 
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A set EC = {EC~I i e I c N} of evolving channels exactly covers a 
partial field fg of  the fieldfo produced by a system Sg if(i) for anyp E EC~ ~ 

there exists at least one o(s~(x); 1 ~  (Sg))E Y~ Efo such that p E 1 ~  (Sg); (ii) 

every ff ~ f i s  in a EC~ ~ E---C; and (iii) every pj ~ l~Ju (Sg) [where ~ (So) is the 
1-[ set of a partial complex belonging to a point offo] that does not belong to 

any EC~ ~ EC immediately connects two point offg. 

If  a set E---C = {EC~ I i ~ 1 c N} covers exactly fg and every EC~ e ~ is 

immediately connected to either n or (n - 1) evolving channels of EC, then 
we will say that fg has an order o f  immediate connection equal to n and a 
boundary o f  order n - 1. If, on the other hand, every EC~ E EC is immediately 

connected to n evolving channels belonging to E---C, then we will say thatJ~ has 
no boundaries and has an order of immediate connection equal to n. 

Definition 8. Given a system S o and the field fg produced by So, we say 

that a partial field fg offg is a reference frame infg if there exists a set ~ = 
{EC1, E C 2 , . . . ,  EC~ . . . .  } of  evolving channels fulfilling the following 
conditions: 

(i) E---C covers exactly J~, and in any sequence of  points of J~ in different 

EC's of EC such that two neighboring points are immediately connected the 
sense of the connections alternate. 

(ii) The ~ states of the evolving particles belonging to any EC~ ~ EC 
are equivalent sets of preparticles. 

(iii) If  EC~, ECj E EC then EC~ is similar to ECj. 

(iv) If  EC~, ECj E EC then EC~ does not cross ECj. 
(v) fg has an order of  immediate connection equal to n and either has 

no boundaries or has a boundary of order n - 1. 

Suppose we are concerned with a system Sg to which belongs a large 
number of particles of many different kinds, connected in such a way that the 
connection between two ~ states consists of a large number of particles. Then, 
the corresponding structure set ~ ~ (Sg) will be rich in different types of 
complexes. The field ~ Y. (So) / ~ may then have a large number of points and 
for almost any pair of these points there are many particles of S connecting 
them. 

We may now ask: How can we define time and space separations in such 
a way that for two points x and x' offg it is possible to assign unambiguously a 
time separation and a space separation between x and x '?  This question is 
equivalent to asking for the way in which reference frames inside a given field 
can be defined. A possible answer is provided by the definition of a reference 
frame given in Definition 8. 
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EC 3 EC 4 EC~ EC. EC 7 EC~ EC 9 

Fig. 6. We represent here a reference f r ame~  in a field fo produced by a system Sg. Each 
double circle stands for a point (an equivalence class of partial complexes) of ~. The 
vertical dotted double lines represent evolving channels. The horizontal dotted double 
lines stand for the immediate connections between evolving channels. 

This definition is illustrated in Figure 6. Each double circle there stands 
for a point (an equivalence class of partial complexes) belonging to a partial 
field J~ which is a reference frame in f~. The vertical dotted double lines 
represent evolving channels. Each such evolving channel EC, (i = 3-9) is 
made up of  evolving particles entering in the partial complexes belonging to 
the points offg which are in EC,. The horizontal dotted double lines stand for 
the immediate connections between evolving channels. 

We have already defined time and space separations between complexes 
belonging to the points of a given field. The extension of such definitions to the 
case of space and time separations between points of a partial fieldfg which is 
in turn a reference frame is straightforward. The time separation between two 
points ~ and ~' Offg which are in the evolving channel EC, is given by the 
number of points offg found in EC, between s and .~'. The space separation 
between y, y '  ~j~ is the number of points appearing on the same horizontal 
row between y and y'. Notice that all of  the consecutive points appearing on a 
horizontal row of Figure 6 are immediately connected, and that the sense of 
the direction of the connections alternate when we pass from one connection 
to the neighboring ones. 

More generally, space and time separations can be unambiguously 
defined for any two points 77 and zT' belonging to fg. Suppose that s and 77' 



180 Garcia-Sucre 

appear both in different vertical and horizontal rows in Figure 6. Then, 
the space and time separations between $ and ~' is obtained by simply 
counting the corresponding intermediate vertical and horizontal rows. For 
instance, the space and time separations between g and ~' in Figure 6 are 
4 and 5. 

In the particular case of fg (as we are considering in Figure 6) each 
evolving channel is immediately connected with either one or two different 
evolving channels. Therefore, the order of immediate connection offo is 2. 
In addition, fg has a boundary of order 1. This corresponds to a reference 
frame with one bounded-space axis and one bounded-time axis. However, 
Definition 8 does not restrict the order of immediate connection to two, and 
therefore other examples corresponding to higher space-dimensionality can 
also be considered. For instance, af~ with an order of immediate connection 
equal to 6 and with no boundaries corresponds to a three-dimensional 
reference frame provided with a time axis. 

All the e~ states of the particles entering into the partial complexes 
belonging to the points offo are equivalent sets of preparticles [see point (ii) 
of Definition 8]. We then may ask for the origin of the nonsimilarity between 
partial complexes (see Definition 5) giving rise to different equivalence classes 
(points) belonging tof~. This nonsimilarity arises as follows: (i) Partial com- 
plexes whose centers are the first ~ state of evolving particles immediately 
connecting points offo are not similar to partial complexes whose centers are 
the last ~ state of such particles; (ii) for partial complexes in the same evolving 
channel EC~ we have that either the evolving particles belonging to EC~ are 
not similar, or there is a different number of evolving particles entering into 
each of these complexes; and (iii) for partial complexes in different evolving 
channels and to which the nonsimilarity mentioned in (i) does not apply, the 
nonsimilarity is of the same kind pointed out in (ii). 

We have represented in Figure 6 only one reference frame, namely, the 
partial field f~ offg. There may well exist other partial fields f~,fg",..., offg 
that are also reference frames infg. One of the conditions for this is that many 
evolving particles with varying number of ~ states and belonging to Sg connect 
the points offo. 

Let us identify the points offg by the centers of the partial complexes 
belonging to these points. These points are connected differently depending 
on which evolving particles we choose from the complexes ~ e Y~ Z (So) to get 
the partial complexes. By varying this choice we find a redistribution of the 
double circles appearing on Figure 6 obtaining a new reference frame, which 
we call f~. This establishes a one-to-one relationship between the points of 
fo and the points of f~, although the space and time separations between the 
points offo will differ from the separations between the points off~. Both 
Galilean and Lorentzian transformations between two reference frames are 
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particular cases of the above transformation between fg and f~. This is be- 
cause both Galilean and Lorentzian transformations between two reference 
frames establish a one-to-one correspondence between the points of these 
reference frames (each point involving both the spatial and time coordinates). 
However, to reproduce such transformations in the present model would re- 
quire a supplementary ad hoe restriction of the way in which, for instance, 
double circles of Figure 6 redistribute when we pass from f~ to fg. Such a 
restriction will be studied in a forthcoming paper (Garcia-Sucre, 1977). 

How would a particle appear in a reference frame f ?  Suppose that the 
state s(x) ofp  has a nonempty intersection with the centers of some partial 

complexes belonging to the points ~7, ~7',... of a partial fieldj~ Then we call 
region offcovered by s(x) the subsetfo of fhaving  as members just the points 
Y~, Y~', . . . .  

In the case of an evolving particlep, the regionsf~,fj , . . ,  of a partial field 
f ,  respectively covered by the a states s~(x), sJ(y),.., ofp  can be ordered by 
the set ~ (p). For instance, if ~. (p) = (s~(x), sJ(y) . . . .  ), then we say that the 
particle p first covers the region f~ o f f  and after the region f j  o f f ,  etc. The 
ordered set (f~,f~. . . . .  ) of regions o f f  is the trajectory ofp in f. It may also 
occur that the intersection of some or all of the a states ofp  with every center 
of the partial complexes belonging to the points o f f  is empty. In that case 
either some or all of the a states o fp  do not appear at any point off .  

A process can be viewed in the present model as follows: Think about an 
evolving particle p whose a states have all the same number of preparticles. 
Let the partial field f be a reference frame defined in a field f .  Consider, in 
addition, that the trajectory of p in f is given by the ordered set (f~, f2 . . . .  ). 
Then p first covers the region f l  of f and afterwards the region f2 off ,  and so 
on. Although the a states ofp  are equivalent sets of preparticles it may occur 
that the regions f ~ , ~  . . . .  of the reference frame fp resen t  a very different 
aspect from each other. Some of them may be very localized in f - - fo r  instance, 
those a states whose regions in f are sets of only one point o f f ,  or a few 
neighboring points o f f .  Some other regions may be very delocalized in f ,  
either by having many points of f and/or by the distribution of its points i n f  
in a way as to have the appearance of an archipelago. An instance of process 
occurring to p in the above case would consist in the passage between two 
consecutive a states of p, say s~(x) and sJ(y), such that s~(x) and sJ(y) cover, 
respectively, a localized and a delocalized region in f .  

The appearance of a trajectory of an evolving particle p' in a reference 
f r a m e f m a y  be strongly discontinuous in the sense that successive points of 
the trajectory of p '  may be greatly separated in f both in space and time. 
However, for a system S having a sufficiently large number of certain types of 
evolving particles, it is always possible to select reference frames out of the 
fieldfproduced by S so that the trajectory ofp '  looks continuous and simple. 
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In this connection (recalling Figure 6), when we pass from one reference 
frame to another the double circles in Figure 6 redistribute. 

This feature of our model fits well with the fact that the conventions we 
currently use to define concrete reference frames are of such a nature that the 
trajectories of the particles observed look simple. A particular case of this is 
represented by the inertial reference frames in which the particles appear to 
be moving linearly and uniformly. 

Notice that if S is a set of few particles then it is not possible to have 
regular extended entities as usual reference frames. In this case the reference 
frames may have only few points and therefore the motion of the particles 
may appear fragmentary. 

Definition 9. Consider two physical systems S and S', and the fields 
f = K ~ (S)/~,  f '  = K ~ (S')/~ a n d f "  = ~ ~ (SUS')/~. We say that S 
and S'  interact, or are coupled, i f f f u f '  r f". On the other hand, S and S' 
do not interact, or are uncoupled, i f f f w f  = f". 

By extension we say that two f ieldsfandf '  interact or are coupled when 
the two physical systems producing them interact. Similarly, for saying that 
f a n d f '  do not interact, or are uncoupled, it is necessary that the two systems 
producingf  a n d f '  do not interact. 

Let us now look at an example of the interaction between a system S of 
many particles and for instance a system So = {p} containing a unique 
particle p. Consider the f i e ld f  = ~ K (S)/~ and the regions of f covered by 
the ~ states of the particles belonging to S. Then, if we now consider the 
system S' = S w {p}, the simple addition of a particle p to S may produce a 
field f '  = ~ ~ (S')/~ different from f in the following three main respects. 

(i) The number of points of f '  may be different from those of f ,  since in 
the passage from f to f '  either the similarity or dissimilarity between the 
complexes of f may be destroyed by adding a particle to some or all of the 1-[ 
sets (see Definition 3) entering into the complexes belonging to the point off .  

(ii) Differences between the structure of the complexes belonging to the 
points o f f '  in relation to those belonging to the points off ,  

(iii) Differences in the way the complexes of ~ ~ (S') are connected in 
relation to the complexes of ~ ~ (S). 

The concept of interaction introduced in Definition 9 may be reconciled 
with the view of process exposed above by the following consideration: 
Suppose a f ie ldf  = K ~ (S)/~ and a subset f l  c f.  Then, it may happen that 
a particle of S, say p, does not appear in any complex belonging to the points 
off1. Accordingly, we could consider that f~ is a field produced by a system 

c S such that p ~ S - 7. In this way, when an evolving particle p' passes 
throughout f~ and penetrates in f -  f~, it could happen that some of the 
changes in the aspect presented by the regions covered by the ~ states of p' 
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may be attributed to the trait o f f  - f~ arising by the presence o fp  in just this 
region o f f .  

From the points (i)-(iii) and the above consideration it may be under- 
stood how the interaction between systems of particle may change the 
geometry of  the fields involved with or without change of  topology. 

3. S O M E  G E N E R A L  P R O P E R T I E S  OF P A R T I C L E S  

In this section we start the study of some general properties of particles. 

Theorem 1. Given an evolving particle P m = {am(x) I x E X}, where 
X _~ R, with more than one ~ state, for sm(x,), sm(xj) ~ ~ (Pro) such 
that sm(xO -< sm(xj), then sm(xO n sm(xj) = ~ .  

Proof. Taking into account equation (2.1), from sm(xO, s~(xj)~ ~ (Pro) 
it follows that 

sm(x3 = am(x3 -- , U am(x~) 
xleX(xO 

and 
s i n ( x 3  = a m ( x J )  - -  U am(x;) 

x ' f X ' ( x  t) 

On the other hand, sm(xO < sm(xj) implies am(x~) c am(xj). Thus 

am(x,) a_ U am(x;) 

and x;~x'<xj) 

[am(xj) - U am(x;)] n am(x,) = 
x'jeX'(x t ) 

i.e., sm(xj) n am(x,) = ~.  Again, from equation (2.1) it follows that sm(x~) ~_ 
am(x,), and therefore sm(xj) n sin(x,) = ~ .  

As a consequence of the above property in the representations that we 
have given in Figures 1-6, there cannot be any evolving particles with any of 
their subsets being represented by closed curves. This implies that according 
to our definition of an evolving particle and c~ state of an evolving particle 
such particles cannot return to any of their ~ state. How can this fact be 
reconciled with the usual meaning of the state of a given particle according to 
which one can say, for instance, that a particle returns to its ground state ? 
To answer this question, let us introduce a generalization of the concept of the 
state of a particle, which covers as particular cases the definition of ~ states 
given in equation (2.1), as well as the concept of state as is usually defined 
either in classical or quantum mechanics. 

Definition 10. Let p~(p,) =_ { ~ k l k E K ~ a } ,  where K~ ~ c R, be a set of 
equivalence relations well defined for all pair of c~ states of the particle p,, and 
consider the quotient sets ~ (PO/~k = {~'(-%) ] 2k ~ -~k}, where ~k c R, for 
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all k e K, ~. We call a state o f  pf with respect to p~(Pi) any set ~(~) -= ( ~ r ~  st(xk), 
where a single element ~k of  Xk occurs for each k e K~t For  all the a states 
s'(x) ofp~ such that s~(x) e ~(~), we say that the particle p, is in its ~(~) state 
with respect to pa(P,). 

This definition reduces to the one given for a states in equation (2.1) in 
Section 2, in the case where pa(p~) contains as unique element the following 
equivalence relation, which we denote by ~ ~: two states of  p, are equivalent 
if they contain the same preparticles. Definition 10 also covers the notion of  a 
state of  a particle in the current sense. In order to see this, let us assume that 
we have already defined what we understand to be the momentum of a particle 
in a given reference frame. Then let ~r  and ~ be equivalence relations so 
that two states of  the particle p, are ~ r and - p equivalent if they correspond, 
respectively, to the same position and the same momentum of p, in a given 
reference frame. In this case each set ~*(~)= (")k~Ki,~*(~k)# ~ ,  where 
P~(P,) = { ~ ~ I k E Kt ~} and K~ ~ = {r, p}, corresponds to a state of  a particle 
p, in the Gibbs '  phase space formalism. 

Let us stress that, depending on the set p~(p,), the physical meaning of  a 
state of  a particle may change drastically. An illustration of this fact is 
provided by the following example. Consider a particle p, and the equivalence 
relations ~ ~ and ~ ~, with the same meaning as above. To each equivalence 
class of  the partition ~ (p,)/~, ~ belongs only one a state of  p,, and ifp~ is an 
evolving particle, each state of  p, corresponds to a stage of its evolution to 
which the particle cannot return according to Theorem 1. On the other hand, 
each equivalence class of  :~ (p~)/~ ~ may contain more than one state, which 
according to Definition 10 corresponds to a particle p~ performing closed 
trajectories in a given reference frame. 

Coming back again to the a states of  a particle, let us say that even 
though an evolving particle cannot return to any of its a states (see Theorem 1 
and Definition 10) a kind of return may occur between a states when more 
than one evolving particle is implicated. For  instance, an evolving particle p~ 
can evolve in an opposite course with respect to another given evolving 
particle pj in the sense that the members of  the ordered sets Y. (p~) and ~ (pj), 
though identical, appear in an inverted order with respect to each other. 
Then, so to speak, two given evolving particles may be such that each of 
them penetrates in the past of  the other. To give an example in which this 
occurs consider the two evolving particles p~ = {{ax}, (al, a2}, � 9  {al, a2 . . . . .  
ak}, {a~, a2 . . . . .  ~k, a~}) and pj = {(at}, {al, a~) . . . . .  {~t, a~ . . . . .  a2}, (a~, a ~ , . . . ,  
~2, a~}), which are such that Y. (p,) = ((~),  {a2} . . . . .  (~ ) ,  (at}) and ~ (pj) = 

Theorem 2. Any state si(x) e Y. (p~) of an evolving particle p~ is a 
nonempty set of  preparticles. 
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Proof.  Let Pt = (at(x) [ x ~ X}, where X c R, be an evolving particle. 
The elements St(x) of  ~ (PO are given by equation (2.1) in Section 2: 

st(x) = ai(x) - U # ( x , )  (3.1) 
x'eX'(x)  

where at(x), at(x ') ~ p,  and at(x) ~: at(x'). Since Pt is an evolving particle we 
have by definition that it must be a chain, i.e., the members of p, can be 
placed in a chain of the type 

�9 . "a'(Xr) c . . . c  #(xs)  c . . . c  a'(xt) c . . .  (3.2) 

where . . . ,  x r , . . . ,  x s , . . . ,  xt . . . .  ~ X.  In particular, the elements at(x'), 
where x ' ~  X ' ( x ) ,  can be placed in a subchain of the above chain (3.2), 
namely, 

�9 . . c  a ' ( X ' r )  c . . . c  #(x',)  c . . . c  at(x't) c . . .  (3.3) 

where . - .  x'r . . . . .  x'~ . . . . .  x~, . . . ~ X ' ( x ) .  Now, every member ofpt appearing 
either in chain (3.2) or chain (3.3) has the property of  being identical to the 
union of itself with all the elements preceding it in the chain concerned. 
Then, in particular for the chain (3.3) we have 

U #(YJ) = # ( x ' )  (3.4) 
x'eY~'(x) 

for every x '  ~ X ' ( x )  and where .~(x ' )  is such that #(Yc') appears in the con- 
cerned chain and #(:~') G #(x').  

Furthermore, in equation (3.1) we have at(x)~:  # ( x ' )  for every 
x" ~ X ' ( x ) ,  which together with the chain (3.2) entails 

at(x ') c at(x) (3.5) 

for every x '  ~ X ' ( x ) .  Therefore, from equations (3.4) and (3.5) it follows that 

U at(x') c at(x) (3.6) 
x'~X'(x) 

Inserting this result into equation (3.1) we finally obtain st(x) # ~ for every 
x ~ X .  

Theorem 3. An evolving particle is either a finite or denumerably 
infinite set. 

Proof.  By definition a particle is any subset of P(B), where B is the set of 
all the preparticles. An evolving particle is a particular case of particle, and 
therefore any evolving particlep~ fulfills pt c P(B) ,  where the proper inclusion 
stands, since P ( B )  includes also nonevolving particles. In addition, the 
members of Pt are ordered by the proper inclusion relation c .  Then, let Pt 
be given by the set {at(x) ] x ~ X}, where X c R. We shall prove that X must 
be equivalent to a subset of the set N of natural numbers. 



186 Garcla-Sucre 

To this end, let us consider the set ~ (P0 of a states ofpt. The members 
s~(x) of ~ (P0 are given by equation (2.1) 

s'(x) = at(x) - U a'(x') (3.7) 
X'EX'(X) 

where #(x), a*(x') ept and #(x) , #(x'). It can be proved that s*(x) # s*(y) 
if the associated members of Pt by equation (3.7) are different, namely, 
at(x) # a*(y), and conversely. Therefore, there exists a one-to-one mapping 
between ~. (Pt) and p,, i.e., ~ (P0 ~ pt. To see this, let us recall that Pt is an 
evolving particle; and then, for any two different members at(x) and a*(y) of 
p~, one has from Theorem 1 that the corresponding a states s*(x) and s~(y) are 
disjoint sets, i.e., st(x) n si(y) --- ~ .  Accordingly, from a~(x) # #(y)  it follows 
s~(x) r s~(y). 

Reciprocally, from s~(x) --P s~(y) and equation (3.7) it follows that 

at( x ) -  U #(x') # a t ( y ) -  U a'(y') 
x'~.X'(x) y'eX'(y) 

which together with either 

#(x') ~ #(x) ~_ U #(y') c #(y)  
x'EX'(x) y'EX'(y) 

o r  

[ j  a'(y') c #(y)  ~ U a~(x') c #(x) 
y'~X'(y) x'~X'(x) 

yield a~(x) # a~(y). In the above inclusion relations we have made use of 
equation (3.6) appearing in the proof of Theorem 2. 

Accordingly, s~(x) # si(y) iff #(x) # #(y)  and therefore there exists a 
one-to-one mapping Y, (P0 +-+Pi. 

Furthermore, since Pt is an evolving particle we have according to 
Theorem 2 concluded that none of the states s~(x) ~ ~ (Pt) can be an empty 
set. Then we can introduce a mapping ~ (p~) ~ / 7  where/7 is a subset of B 
containing only one preparticle of every st(x) ~ ~ (Pt), such that we make the 
unique preparticle belonging to s~(x)0/7 correspond to s~(x). The case 
B = /7 occurs when Pt is an evolving particle such that the elements of ~ (P0 
are sets of only one preparticle, and for every ~ E B it follows that {~} ~ ~ (p~). 

Now, all the elements of Z (P0 are disjoint sets of preparticles (see 
Theorem 1), and accordingly the above mapping ~ (P0 ~ / 7  is such that 
different elements of Y. (Pt) correspond to different elements of/7. 

Reciprocally, different members of/7 correspond to different members of 
:~ (P3 since we have selected only one member of each s~(x) ~ ~ (P3 in order 
to put it in correspondence with s~(x) itself. We have thus the one-to-one 
mappings p~ +-+ ~ (p~) and ~ (P0 ~ / 7 .  We can write p~ ~ t7, which together 
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with B _c B, and the fact that B is a denumerably infinite set, entails that p~ 
is either finite or denumerably infinite. 

Theorem 4. A nonevolving particle is either a finite or an infinite set, 
and in the latter case can be either denumerably infinite or infinite 
with the cardinality of the continuum. 

Proof. To see that a nonevolving particle can be a finite set it is sufficient 
to give an example as {{~}, (~j}), where ~, ~j ~ B, which without being a 
chain is, however, a nonempty subset of P(B). In the same way, an instance of 
a nonevolving particle represented by a denumerably infinite set is provided 
by ((~} [ ~ ~ B). Finally, let us show that there exist nonevolving particles 
such that the sets representing these particles have the cardinality N1 of the 
continuum. To this end, let us consider the particle p~ = P(B).  From 
Pc = P(B)  it follows that there exist a~(x),a~(y)~p~ such that neither 
a~(x) c a~(y) nor a~(x) D a~(y). Accordingly, p~, though a particle, is not an 
evolving particle. Also we have that, p~ is represented by a set whose cardinal~ 
ity is N1, since P(B)  has the cardinality of the continuum provided that B is a 
denumerably infinite set. Any other particle Ps = P(B)  - Pk, where p~ is any 
evolving particle, equally provides an example of a nonevolving particle 
represented by a set whose cardinality is N1, since any evolving particle is 
either a finite or a denumerably infinite set (see Theorem 3) and pk does not 
remove from pj elements such that neither a~(x) c a~(y) nor a~(y) ~ a~(x). 

4. CONCLUDING REMARKS 

Though the model of the physical world formulated above has a very 
general character (which is a typical deficiency of simple models) it presents 
the following positive features: 

(i) The primitive concepts of the model are of a simple nature and 
intuitively clear, opening the possibility of full use of a fundamental 
mathematical formalism. 

(ii) Particle, field, and interaction between systems of particles are 
obtained as derivative concepts. 

(iii) An explicit relation is given between particles and fields (see 
Definitions 1-7). 

(iv) The concept of field given here presents some general traits that are in 
agreement with recent ideas on the richness of the physics of the vacuum 
(Misner et al., 1970b). For instance, the points of a field and the way in which 
they are connected may have an intricate structure. Furthermore, the path of 
an evolving particle in a field may reveal fluctuations in the way in which the 
points of the field are connected. 

(v) The model by its generality presents a flexible character sufficiently 
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app rop r i a t e  to make  r o o m  for  fur ther  deve lopments  in which descr ipt ions  o f  
specific p roper t ies  o f  physical  systems could  be made.  

Final ly ,  let us say tha t  our  mode l  cou ld  be cons idered  as an  a t t empt  to  
fo rmula te  a k ind  o f  p regeomet ry  in the sense s ta ted  by  Misner  et al. (1970c), 
t hough  the  cand ida te  o f  p regeomet ry  tha t  these au thors  tend  to  favor  is the 
calculus o f  propos i t ions .  
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